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Abstract 

Agricultural expansion and intensification in Canada’s Prairie Pothole Region (PPR) 

have contributed to declining waterfowl populations since the 1970s. Although this region 

represents a mere 10% of North America’s waterfowl breeding habitat, it produces over 

50% of the continent’s duck population and roughly 60% of Canada’s agricultural output. 

Thus, intense competition exists between private economic interests and public benefits in 

the PPR. To better understand the conflict between agricultural and wildlife uses of land, 

panel methods are used to examine the spatiotemporal variation of waterfowl populations 

and agricultural land use intensity in the PPR from 1961-2006. For the main static model, 

we find that a one percent increase in cropland or pasture decreases duck density by 6%, 

while a similar increase in summerfallow area decreases duck density by 7%. Estimates 

based on a dynamic specification are more conservative. For the lagged dependent variable 

model, a 1% increase in cropland and pasture decreases duck density by 4.6%, while a 

decline of 4.7% is predicted for increases in summerfallow area. The spatial autoregressive 

model allows the derivation of measures for assessing direct and indirect impacts. The 

estimated direct impacts fall between those obtained from the standard and dynamic 

models, but, when spillover effects are included, the impacts exceed those predicted by the 

standard model. It would appear that conserving wetlands in one location has the added 

benefit of increasing productivity of wetlands at other locations. 

Keywords: wetlands protection; spatial econometrics; GIS; land use conflict; migratory 

waterfowl  

JEL Classification: Q57, C33, Q15, Q24  
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1. Introduction 

Canada’s Prairie Pothole Region (PPR) represents a mere 10% of North America’s 

waterfowl breeding habitat (Figure 1), but the region produces over 50% of the continent’s 

duck population (Baldassarre et al. 1994). Since the PPR also accounts for roughly 60% of 

Canada’s agricultural output (Statistics Canada 2006), intense competition exists between 

private economic interests and public benefits in this region. Not surprisingly, wetlands 

and waterfowl numbers have been in decline, and lie below levels considered socially 

desirable.  North American waterfowl populations have fallen by as much as 40% since 

populations began to be monitored in the early 1950s (US Fish and Wildlife Service 2010b). 

Using a bioeconomic model of waterfowl management in which wetlands only 

benefitted duck hunters, Brown and Hammack (1973) found that both wetlands area and 

waterfowl populations should be increased over historic levels. Nearly 40 years later, the 

situation had not changed: van Kooten, Withey and Wong (2011) found wetlands and duck 

numbers were well below their socially desirable levels, and that climate change and 

efforts to mitigate it through biofuel policies only served to widen the ‘externality gap’ 

(Withey and van Kooten 2011).  Yet, duck populations have continued to experience 

periods of sharp decline since the mid 1970s. 

Drought and climate change have likely been influential factors in bring about 

declines in waterfowl numbers, but habitat displacement and degradation from increased 

agricultural activity have also been an important cause. Due to the ecological and economic 

benefits of preserving wetlands and waterfowl, an empirical examination of the effects of 

agricultural land use on waterfowl populations is worthwhile, not only for understanding 
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the potential intensity and significance of these effects, but also for gaining insights for 

management plans that seek to forestall habitat loss and population declines.  

  Various wetland conservation activities have been undertaken by public and 

private agencies since the 1890s (Porter and van Kooten 1993), but the establishment of 

the North American Waterfowl Management Plan (NAWMP) in 1986 constituted the first 

continental effort to restore waterfowl populations – to levels seen in the mid 1970s (CWS 

2004). Since its inception, over $1.5 billion has been used in conservation efforts across 

Canada with more than half of these funds directed to the prairies (NAWMP Committee 

2009). In the PPR where the overlap between the best waterfowl habitat and the best 

agricultural lands can be as high as 91 percent (Bethke and Nudds 1995), it is not 

surprising that the primary conservation strategy is land securement: “The protection of 

wetland and/or upland habitat through land title transfer or binding long-term (minimum 

10-year) conservation agreements with a landowner” (NAWMP Committee 2009). To date, 

over six million acres has been secured and an additional two million acres targeted over 

the next 10 years (NAWMP Committee 2009).  

 This study does not aim to judge the effectiveness or efficiency of NAWMP programs 

(see van Kooten and Schmitz 1992; Porter and van Kooten 1993), but recognizes that an 

important step in any such evaluation is to explore the causal relationship between 

agricultural land use and waterfowl populations. Using linear panel models, we examine 

whether there is empirical support for the hypothesis that agricultural intensification 

impacts waterfowl populations negatively, and, if so, the potential extent of this impact 

given that migratory waterfowl can choose to breed where wetlands are more plentiful if 

wetlands at one location are lost or reduced.  
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The cross-sectional units used in the analysis are the US Fish and Wildlife Service’s 

strata 26-40 (Figure 1). The timeframe under consideration is 1961-2006, as these are the 

years when census data are available. The panel data models employed in the analysis can 

be classified as standard, dynamic and spatial. For the main standard model, we find that a 

one percentage point increase in cropped farmland decreases duck density by 6%, while 

respective declines are 7% and 6% for increases in summerfallow and pasture area. The 

estimates from dynamic specifications are more conservative; for the lagged dependent 

variable model, a one percentage point increase in cropland or pasture is predicted to 

decrease duck density by 4.6%, and by 4.7% for a proportionally equivalent increase  in 

summerfallow area.   

Given that migratory waterfowl are mobile across the landscape, the spatial 

autoregressive model is important because it allows the derivation of measures for 

assessing direct and indirect impacts. The estimated direct impacts for the most 

conservative set of estimates fall between those obtained from the standard and dynamic 

models. However, when spillover effects are also included, the impacts exceed those 

predicted by the standard model. This suggests that models that ignore spatial aspects 

underestimate effects , and conserving wetlands in one location has the added benefit of 

increasing productivity of wetlands in producing waterfowl at other locations. 

We begin our study in the next section by reviewing literature most relevant to our 

analysis. This is followed by a description of the data and data sources, the models, and the 

results. We conclude with empirically derived estimates of the potential value of waterfowl 

(ducks in our analysis) and some observations concerning future research needs. 
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Figure 1: Transects and Strata of the Waterfowl Breeding Population and Habitat Survey 
(Source: Wilkins and Cooch 1999, p.38; US Fish and Wildlife Service 2010a, p.60) 

2. Literature Review 

This paper is loosely based on a study by Podruzny et al. (2002), who use random 

coefficient models, fixed effects models and various mixed specifications to examine the 

response of northern pintail ducks to changes in wetlands and agriculture in the PPR from 

1961-1996. Their regression specifications model pintail density as a function of wetland 

density, climate variables (soil moisture and precipitation), and measures of agricultural 

land use intensity (percentages of improved farmland, pasture, cropland, etc.). Additionally, 

their analysis is conducted at various spatial scales (provincial-, stratum- and transect-

levels) in order to obtain an understanding of possible multiscale effects.  

 We adopt a variation of Podruzny et al.’s (2002) general model and use many of the 

same covariates, but our analysis is much less ambitious as it examines effects at the 

stratum-level only. As discussed in more detail later, we are unable to justify the use of 

random effects and instead opt for fixed effects estimation. Although the title of Podruzny 
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et al.’s (2002) paper suggests otherwise, they are not interested in determining the 

magnitude of the impact of agriculture and wetlands on pintail populations, perhaps 

because this species only accounts for ~5% of the total duck population in the PPR. Thus, 

they do not report any coefficient estimates, but focus on whether the covariates are 

statistically significant and the direction of the impact based on the signs of the slope 

estimates. They find that, in general, pintail density is positively related to pond density, 

precipitation and percent summerfallow, and negatively related to percent cropland and 

percent improved pasture. With the exception of pintails and a few other minor species, 

ducks rarely nest in crop or fallow land (Baldassarre et al. 1994); thus, although Podruzny 

et al. (2002) find a positive relationship between pintails and summerfallow, this result 

cannot be generalized and the relationship should be negative for waterfowl as a whole.  

 Bethke and Nudds (1995) also study the effects of climate and land use variables on 

duck populations. They examine ten species individually, but the model specifications are 

not reported in their paper. However, it is apparent that they examine climate and land use 

effects separately and run separate multivariate regressions for each species and stratum. 

As this approach does not take advantage of the information that can be gained from the 

panel structure of the data, it is inefficient (Wooldridge, 2002). In addition, their OLS 

estimators likely have considerable bias, because relevant regressors that are likely 

correlated with their predictor variables have been omitted from the models. Although we 

do not follow the unit-by-unit approach of Bethke and Nudds (1995), the variables used in 

their study are similar to those chosen by Podruzny et al. (2002) and for the current study, 

and are thus useful for comparing results. With regards to the effects of agricultural land 

use, Bethke and Nudds (1995) find that the resulting habitat loss accounted for 65% and 
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80% of the variation in mallard and northern pintail population deficits, respectively. (As 

noted, northern pintail are a minor species while mallards account for about one-quarter of 

all ducks.) No significant relationship was detected for the other species.  

 In an examination of mallards, Miller (2000) takes a slightly different approach by 

using a log transformed index of production (the ratio of immature to mature mallards) 

instead of population density or numbers as the dependent variable. The suite of potential 

predictor variables is similar to that chosen by Bethke and Nudds (1995) and Podruzny et 

al. (2002), and Miller (2000) expands his analysis to include regions in the United States. 

His approach is pooled OLS with models examined at two spatial scales: the stratum scale 

and the continental (Canada’s PPR) scale. Similar to Bethke and Nudds (1995), Miller also 

finds a negative relationship between cropland and mallard production at the stratum 

level. However, at the continental level, the relationship is positive. He views this 

relationship as spurious, resulting from random error. 

We also considered a pooled OLS regression model, but specification tests suggested 

that it was appropriate to allow for heterogeneity across units and time. Further discussion 

is provided in later sections.  

3. Data 

We used data compiled from surveys of wetland and waterfowl counts, drought 

indices derived from meteorological data, and agricultural censuses. This is discussed 

further below. Summary statistics appear in Table 1. For the static and dynamic models, 

data are first sorted by cross-section and then by time – 1961, 1966, etc. for stratum 26 

followed by 1961, 1966, etc. for stratum 27, and so forth for each of strata 26-40 (Figure 1). 
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For the spatial models, data are first sorted by time and then by cross-section. 

Waterfowl and Wetlands 

Beginning in 1955, the US Fish and Wildlife Service (USFWS) and the Canadian 

Wildlife Service (CWS) have conducted annual ground and aerial surveys in May that 

provide counts of ponds and various waterfowl species. For the purposes of this survey, the 

PPR is divided into 15 strata, denoted as strata 26-40 in Figure 1. Figure 2 displays the time 

series for duck populations and pond counts for the entire PPR. These two series are highly 

correlated, and duck population movements appear to follow pond count movements. The 

close relationship between these two variables has been examined in depth in numerous 

studies; thus isolating the effect of wetland numbers on duck populations is not of 

particular interest here. Rather, we focus on whether wetland numbers moderate the effect 

of agricultural land use on duck populations.  

 

 
Figure 2: Duck Population and Pond Count Time Series, 1955-2009 (Source: USFWS 2010b) 
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Table 1: Panel Summary Statistics, 1961-2006 
  Mean Std. Dev. Min Max 
Ducks Overall 885,739.5 860,270.0 18,438.0 4,278,517.0 
(number) Between  768,571.9 69,543.8 2,562,622.0 
 Within  430,164.8 -439,824.8 2,601,634.0 
      
Ponds Overall 235,632 193,852.4 23,103.0 1,041,420.0 
(number) Between  156,340.9 58,351.0 513,210.7 
 Within  120,882.9 -153,958.5 763,841.3 
      
% Croplanda Overall 37.695 14.451 6.266 67.868 
 Between  13.509 8.930 61.951 
 Within  6.113 22.626 48.895 
      
% Fallowa Overall 11.861 7.568 0.312 28.947 
 Between  6.203 1.736 23.696 
 Within  4.596 -1.076 22.996 
      
% Pasturea Overall 3.475 2.211 0.275 12.509 
 Between  1.451 0.965 7.329 
 Within  1.707 -2.311 8.655 
      
SPI-1 Month Overall -0.132 0.981 -3.720 1.910 
 Between  0.197 -0.416 0.197 
 Within  0.962 -3.458 1.828 
      
SPI-12 Month Overall 0.142 1.036 -3.720 2.430 
 Between  0.260 -0.190 0.474 
 Within  1.005 -3.425 2.515 

Notes: Each variable has 150 total observations across 15 strata over 10 time periods. 
a Percentage of total farm area. 

 

Agricultural Data 

Agricultural land use data were obtained from the Census of Agriculture, which is 

conducted by Statistics Canada every five years since 1961. The most recent census was in 

2006 (Statistics Canada 2006). Data for individual Census Consolidated Subdivisions (CCS) 

were assigned to survey strata using the ArcGIS software package and aggregated to obtain 

three measures of agricultural land use intensity: proportions of farm area used as 

cropland, summerfallow and improved pasture (Table 1). Time series of cropland acreage 

and waterfowl numbers for the PPR appear in Figure 3. This figure illustrates a possible 
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negative relationship, especially after the 1970s. 

 
 

Figure 3: Cropland Acreage and Duck Count Time Series 

The overlay of Statistics Canada’s Census Consolidated Subdivisions and the 

USFWS’s waterfowl strata boundaries dictate the assignment of CCS data to each stratum, 

as indicated in Figure 4. When a CCS overlies two or more strata, the acreage data were 

multiplied by the proportion of the CCS that falls within the stratum under consideration. 

To ensure consistency between years, we only consider CCS with observations in every 

census year, unless the missing observation was due to amalgamation for confidentiality 

reasons with a neighbouring CCS. To complicate this matter, the numeric identifiers for the 

CCS were changed by Statistics Canada in 1981; thus, we recoded the earlier years prior to 

performing ArgGIS database procedures.1

                                                        
1 The names of the CCS are also inconsistently formatted from year to year, so it could not 
be used as a key. 

 This method revealed 446 CCSs that coincided 
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remain consistent over time, we simply assume that they do not change. 

 

 

Figure 4: Strata of the Waterfowl Breeding Population and Habitat Survey (thick lines) and 
Census Consolidated Subdivision Boundaries of the Census of Agriculture (thin lines) 

 

It is worthwhile examining the spatiotemporal variation of the agricultural variables 

to gain an understanding of the localized land use changes that have occurred since the 

1960s. This is done in Figure 5. Although cropland intensification occurred variably across 

the PPR, increases are apparent for most regions, with the exception of the southeast 

corner of Alberta, the southwest corner of Saskatchewan, and parts of central Manitoba. 

The reasons are related to climate – southeast Alberta and southwest Saskatchewan are the 

most arid regions in the PPR – and geography, with the portion of central Manitoba 

showing no agricultural intensification containing large bodies of water. The proportion of 

cropland in the region increased roughly 22 percent points from 1961 to 2006.  
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Percent Cropland 

 

Percent Summerfallow 

 

  

  

  
 
Figure 5: Spatiotemporal Variation of Percent Cropland and Percent Summerfallow 
 

Summerfallow declined dramatically from a mean of 24% in 1961 to under 7% in 

2006. Although not shown in Figure 5, the percent of improved pasture has not changed 

substantially. The mean increase is roughly 5%, so it could possibly be categorized as a 

slow moving variable. 
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Standardized Precipitation Index 

The standardized precipitation index (SPI) is a drought index obtained from the 

North American Drought monitor; 2

4. Models and Estimation Methods 

 it is available for various weather stations across the 

prairies. We employ data for the month of May from the weather station closest to the 

center of each survey region, selecting a short-term one month SPI as well as a longer-term 

12 month index for our analysis. The index takes on values from -4 to +4: a value of zero 

indicates average wetness conditions as determined for the 1951-2001 standardizing 

period. Positive values indicate wet conditions, whereas negative values indicate dry 

conditions. We chose data from May to coincide with the month when planting generally 

occurs (and choice is made as to fallow or crop), and the month in which waterfowl 

breeding and habitat surveys are conducted.  

There are many advantages to using panel data. By examining data for a given 

number of regions over time, we can distinguish between inter- and intra-regional 

variability. Thus, we can construct richer models that are more informative than those that 

are available with pure cross-section or time series data. In addition, there are gains from 

additional  degrees of freedom and the opportunity to control for omitted variable bias.  

 To examine the impact of agricultural land use on prairie waterfowl populations, 

three types of panel data models are considered: standard, dynamic and spatial. For each 

type of model, various specifications are compared and justifications for their use are 

provided. The three model specifications are provided in the remainder of this section. 

                                                        
2 http://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/ 
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4.1 Standard Panel Models 

Fixed effects estimation is a standard approach in panel analysis. It is one way to 

model heterogeneity and potentially correct for omitted variable bias by controlling for 

unobserved time- and/or unit-invariant effects (Wooldridge 2010). Thus, it may be 

possible to obtain better estimates for the parameters of interest by allowing the model to 

account for the effects of variables that are too difficult to observe or for which data are not 

available (Wawro 2002). In the analysis, geographic and biological differences across strata 

likely affect the response of waterfowl to agricultural land use changes, leading to different 

responses across strata; this justifies a time-invariant cross-section effect. Similarly, there 

exist unit-invariant economic incentives, such as commodity prices, that potentially affect 

land use decisions and waterfowl abundance. Thus, the inclusion of a temporal fixed effect 

is justified theoretically. Statistically, F-tests support the inclusion of both temporal and 

unit fixed effects over pooled OLS. However, the fixed effects model essentially demeans 

the variables before applying OLS, making it unable to estimate the effects of observable 

variables of interest that are slow moving or time-invariant (Wilson and Butler 2007). 

Procedures outlined in Plümber and Troeger (2007) overcome this issue, but application of 

their technique is left for future research. 

 The unobserved effects can also be viewed as random draws from a probability 

distribution and estimated using random effects. However, whereas the unobserved effects 

may be correlated with the predictor variables with fixed effects models, they must be 

uncorrelated for the random effects estimator to be consistent. We are not convinced that 

the unobserved effects are orthogonal to the other covariates. In support of this view, we 

use a robust Hausman test (Schaffer and Stillman, 2010) to find that random effects 
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estimation is inappropriate. Thus, we specify two fixed effects models: 

ln(𝑦𝑛𝑡) = 𝑥𝑛𝑡′ 𝛽 + 𝛼𝑛 + 𝛾𝑡 + 𝜀𝑛𝑡, 𝜀𝑛𝑡~𝑖𝑖𝑑(0,𝜎𝜀2) (1) 

ln(𝑦𝑛𝑡) = 𝑥𝑛𝑡′ 𝛽 +  𝛽6𝑙𝑃𝑁𝐷𝑛𝑡𝐶𝑃𝐿𝑛𝑡 + 𝛽7𝑙𝑃𝑁𝐷𝑛𝑡𝑆𝑀𝐹𝑛𝑡 +  𝛽8𝑙𝑃𝑁𝐷𝑛𝑡𝑃𝑆𝑇𝑛𝑡 (2) 

+ 𝛼𝑛 + 𝛾𝑡 + 𝜈𝑛𝑡, 𝜈𝑛𝑡~𝑖𝑖𝑑(0,𝜎𝜈2) 

where ynt is duck density, measured as the number of ducks per square km, for stratum n in 

period t; n = 1 … 15; t = 1 … 10; 𝑥𝑛𝑡′ = (𝑙𝑃𝑁𝐷𝑛𝑡 , 𝑆𝑃𝐼𝑛𝑡 ,𝐶𝑃𝐿𝑛𝑡, 𝑆𝑀𝐹𝑛𝑡 ,𝑃𝑆𝑇𝑛𝑡) is a row vector 

of core explanatory variables that appear in every model; β is a 5 × 1 vector of coefficients; 

αn is the unit effect; and γt is the period effect. The variables, their descriptions and 

expected signs are provided in Table 2.  

 Model (1) is the main effects model – a standard panel model with both unit- and 

time-specific effects. The fixed effects estimation procedure can be viewed as OLS on a 

transformed model in which the original variables have their group and time means 

subtracted and the overall mean added. This transformation essentially eliminates the 

fixed effects; thus, the estimation involves applying OLS to 𝐷𝑁𝑇𝑦 = 𝐷𝑁𝑇𝑋𝛽 + 𝐷𝑁𝑇𝜀, where 

𝐷𝑁𝑇 = 𝐼𝑁𝑇 − 𝐼𝑁 ⊗
1
𝑇𝜄𝑇𝜄𝑇

′ − 1
𝑁𝜄𝑁𝜄𝑁

′ ⊗ 𝐼𝑇 + 1
𝑁𝑇𝜄𝑁𝑇𝜄𝑁𝑇

′  

is the within projector, ι is a unit column vector with size denoted by its subscript and ⊗ 

denotes the Kronecker product.   

The second model is the interactive effects model. Since habitat conditions are 

extremely important in the determination of waterfowl abundance, wetland numbers 

possibly influence or moderate the effect of the land use variables. Therefore, it is possible 

that the coefficients on the land use variables are different for different values of pond 
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density. We test this hypothesis by including interactions between ponds and the land use 

variables. 

Table 2: Independent Variables and the Expected Slope of Their Relationship with 
Waterfowl Density 

Variable Definition 
Expected 
Slope 

lPND Natural log of pond counts per square kilometer + 

SPI 
Either the 1-month or 12-month Standardized Precipitation 
Index + 

CPL Percentage of farm area that is cropland - 
SMF Percentage of farm area that is summerfallow - 
PST Percentage of farm area that is improved pasture - 
CPL×lPND Interaction term between CPL and lPND + or - 
SMF×lPND Interaction term between SMF and lPND + or - 
PST×lPND Interaction term between PST and lPND + or - 
Fixed Effects Unobserved cross-sectional or temporal controls + or - 

4.2 Dynamic Panel Models  

Allowing for heterogeneity by way of fixed or random effects is also an alternative, 

as well as a supplement, to dynamic models for modelling persistence in the data (Wawro 

2002). Consequently, the next suite of models, motivated in part by Wilson and Butler 

(2007), examine dynamic panel models. 

ln(𝑦𝑛𝑡) = 𝛼𝑛 + 𝛾𝑡 + 𝑥𝑛𝑡′ 𝛽 + 𝛽6𝑙𝑛(𝑦𝑛𝑡−1) + 𝜀𝑛𝑡 (3) 

ln(𝑦𝑛𝑡) = 𝛼𝑛 + 𝛾𝑡 + 𝑥𝑛𝑡′ 𝛽 + 𝛽6𝑙𝑃𝑁𝐷𝑛𝑡−1 + 𝜈𝑛𝑡 (4) 

ln(𝑦𝑛𝑡) = 𝛼𝑛 + 𝛾𝑡 + 𝑥𝑛𝑡′ 𝛽 +  𝜐𝑛𝑡, 𝜐𝑛𝑡 = 𝜌𝜐𝑛𝑡−5 + 𝜉𝑛𝑡 (5) 

Before proceeding with further explanations of these models, a clarification on 

notation is in order. As mentioned previously, there are 15 cross-sectional units and 10 

temporal observations per unit; thus, each stratum has an observation every five years 

from 1961 to 2006, inclusive. However, we have access to annual waterfowl and wetland 
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data, so the lags in (3) and (4) make use of this fact. Thus t = 1961, 1966 … 2006. For model 

5, we  subsequently refer to this process as a first-order autoregressive model.  

Model 3 is the standard lagged dependant variable (LDV) model, which is 

theoretically justified since duck density in the previous period is a powerful predictor of 

duck density in the current period.3

                                                        
3 Year after year, female ducks generally return to the breeding grounds where they 
hatched, and male ducks follow their female partner (Baldassarre et al. 1994).  

 However, traditional OLS fixed effects estimation will 

be biased and inconsistent because the LDV is correlated with the transformed 

disturbance. A Wooldridge (2010, pp.319-320) test for autocorrelation yielded a p-value of 

0.006; thus serial correlation is still present even with the addition of a LDV. One strategy 

for overcoming the estimation issues present with OLS is instrumental variables (IV), but 

finding suitable instruments is problematic. Choosing two lags of the dependent variable, 

which essentially exploits sequential moment restrictions (Wooldridge 2010), appears to 

be the standard approach; but, if the level of serial correlation is small, it may be better to 

use OLS instead of IV with weak instruments (Beck and Katz 1996). In addition, while IV 

yields consistent estimators, we only have ten time observations for each stratum, so the 

finite-sample properties of the IV estimator may be worse than under OLSNevertheless, 

both results are presented in the empirical results section. 

 Model 4 is the distributed lag (DL) model; model 5 is the first-order autoregressive 

(AR) model. Although the theoretical justification for model 3 is stronger than for model 4, 

which is stronger than model 5, comparisons of the estimates serve as a useful robustness 

check. 
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4.3 Spatial Panel Models 

 In controlling for unobserved unit heterogeneity, the models described previously 

account for regional characteristics but not spatial dependence or interaction. Of course, 

model misspecification potentially renders the estimators biased and inconsistent. 

Fortunately, spatial panel models can be specified to account for both unit heterogeneity, 

captured by pure fixed effects, as well as interactive heterogeneity, captured by the impact 

coefficients of the model (Debarsy and Ertur 2010). Maximum likelihood (ML) and 

generalized method of moments (GMM) are the most common methods used to estimate 

spatial models (Elhorst 2009) – we employ ML. 

 To account for spatial effects, two types of models are common: the spatial 

autoregressive model (SAR) and the spatial error model (SEM). The SAR model, also known 

as the spatial lag model, is typically used when the dependent variable for a given region is 

jointly determined with that of its neighbours, whereas the SEM model has a standard 

panel specification but views the error terms as correlated across space, and thus are non-

spherical (Anselin et al. 2006). Moreover, both specifications can be combined to construct 

a higher-order spatial model (SARAR). For time period t, the SARAR specification is 

𝑌𝑡 = 𝜌𝑊𝑁𝑌𝑡 + 𝑋𝑡β + 𝛼 + 𝛾𝑡𝜄𝑁 + 𝜀𝑡, where 𝜀𝑡 = 𝜆𝑀𝑁𝜀𝑡 + 𝜈𝑡;  𝜈𝑡~𝑁(0,𝜎𝜈2𝐼𝑁), (6) 

where Yt is the N × 1 lagged dependent variable, Xt is the N × 5 matrix of explanatory 

variables, β is the 5 × 1 vector of coefficients, α is an N × 1 vector of unit effects, γt is the 

scalar time effect, ιN is a N × 1 vector of ones, W and M are row-normalized spatial weight 

matrices, ρ is the spatial autoregressive coefficient, and λ is the spatial autocorrelation 

coefficient. In contrast to the aspatial models, the data are sorted first by time and then by 
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spatial units – strata 26, 27, etc. for 1961 followed by strata 26, 27, etc. for 1966, and so on. 

 The spatial weight matrices, W and M, are positive, N × N and assumed to remain 

constant over time. They specify the strength and structure of the relationship between a 

region and its neighbours. The row elements represent the effect of all other regions on a 

particular stratum and the column elements represent the effect of a particular stratum on 

all other regions (Elhorst 2009). The choice of weight matrix is rather arbitrary; thus, we 

consider a Queen-based contiguity as well as an inverse distance matrix, both of which are 

common in the spatial econometrics literature. For Queen-based contiguity, all regions 

sharing a border or vertex are considered neighbours and the appropriate element is set to 

1; all other elements are 0. For inverse distance, we use the inverse of the arc distance 

separating the strata centroids. Thus, all regions are neighbours, but the strength of the 

relationship is weaker for regions that are farther away. We do not allow for the possibility 

of self-influence; therefore, all diagonal elements are zero.  

For computational reasons, the weighting matrices are row-standardized so that 

each row sums to 1. Finally, for stationarity, 1 𝜔𝑚𝑖𝑛� < 𝜌 < 1 𝜔𝑚𝑎𝑥�  and 

 1 𝜔𝑚𝑖𝑛� < 𝜆 < 1 𝜔𝑚𝑎𝑥� , where ωmin and ωmax are the smallest and largest eigenvalues of the 

weight matrix. However, the smallest eigenvalue of a row-standardized weight matrix 

could be less than minus 1 (Elhorst 2009). 

 From (6), it is clear that the SAR and SEM models are special cases of the SARAR 

model in which λ or ρ is restricted to be zero, respectively. Following the procedures 

outlined in Anselin et al.  (2006; hereafter ALJ), or Debarsy and Ertur (2010; hereafter DE), 

Lagrange multiplier (LM) tests can be constructed to determine the most appropriate 

specification. However, the procedure outlined in DE differs from ALJ with regard to the 
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method adopted to demean the variables to eliminate the fixed effects. Recall that fixed 

effects estimation applies a within transformation to the variables; this method is also used 

by ALJ (2006). In contrast, DE follow a method outlined in Lee and Yu (2010; hereafter LY), 

who note that the traditional within transformation applied to SARAR models causes the 

maximum likelihood estimators (MLEs), including the MLE of the variance parameter, to be 

inconsistent unless N is large. More concerning is the bias of these estimators. The Monte 

Carlo results in LY show that the biases of the coefficient estimators for β are small 

regardless of which method is used to transform the data; however, the bias of the variance 

estimator is roughly 10 times larger using the standard within transformation when N and 

T are both small. This bias is potentially problematic for inference. Consequently, we 

obtained estimates for both types of transformed data and compare them in the next 

section. 

 The within transformation was described previously. Following DE, we refer to the 

LY method as a pseudo-within transformation. For simplicity, consider a SAR model with 

unit effects only: 𝑌𝑡 = 𝜌𝑊𝑁𝑌𝑡 + 𝑋𝑡β + 𝛼𝑛 + 𝑉𝑡, where Yt = [y1t, y2t ... yNt]΄ is an N × 1 vector, et 

cetera. The traditional within transformation uses the demeaning operator, 𝐽𝑇 = 𝐼𝑇 − 1
𝑇𝜄𝑇𝜄𝑇

′ , 

to remove the unit fixed effects. However, this operation creates linear dependence over 

the time dimension in the disturbances, and these are no longer well-behaved. To avoid 

this issue, LY use the eigenvectors of JT to create an orthogonal transformation. The 

eigenvalues of JT consist of one zero and T-1 ones. Let FT,T-1 denote the T × (T-1) matrix of 

eigenvectors corresponding to the non-zero eigenvalues. The pseudo-within 

transformation for Y is  
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   �
𝑌𝑛,1
∗

⋮
𝑌𝑛,𝑇−1
∗

� = �𝐹𝑇,𝑇−1
′ ⊗ 𝐼𝑁��

𝑌𝑛,1
⋮
𝑌𝑛,𝑇

�, 

which results in 𝑌𝑡∗ = 𝜌𝑊𝑁𝑌𝑡∗ + 𝑋𝑡∗𝛽 + 𝑉𝑡∗ when the transformation is applied to all 

variables. It follows that  

𝐸(𝑉𝑛∗𝑉𝑛∗′) = �
𝑉𝑛,1
∗

⋮
𝑉𝑛,𝑇−1
∗

� (𝑉𝑛,1
∗ … 𝑉𝑛,𝑇−1

∗ ) = 𝜎2�𝐹𝑇,𝑇−1
′ ⊗ 𝐼𝑁��𝐹𝑇,𝑇−1⨂𝐼𝑁� = 𝜎2𝐼𝑁(𝑇−1) 

and the log likelihood function, assuming normal errors, can be expressed as 

𝐿𝐿(𝛽,𝜌,𝜎2) = −𝑁(𝑇−1)
2 ln(2𝜋𝜎2) + (𝑇 − 1)|𝑆𝑛(𝜌)| − 1

2𝜎2
∑ 𝑉𝑛𝑡∗

′(𝛽,𝜌)𝑉𝑛𝑡∗ (𝛽,𝜌)𝑇−1
𝑡=1 , (7) 

where 𝑆𝑛(𝜌) = (𝐼𝑁 − 𝜌𝑊𝑁) and 𝑉𝑛𝑡∗ = 𝑆𝑛(𝜌)𝑌𝑛𝑡∗ − 𝑋𝑛𝑡∗ 𝛽. Sn is assumed to be invertible. In 

contrast, the log likelihood function for the direct approach is 

𝐿𝐿𝑑(𝛽, 𝜌,𝜎2) = −𝑁𝑇
2 ln(2𝜋𝜎2) + 𝑇|𝑆𝑛(𝜌)| − 1

2𝜎2
∑ 𝑉�𝑛𝑡′ (𝛽,𝜌)𝑉�𝑛𝑡(𝛽,𝜌)𝑇−1
𝑡=1 , (8) 

where 𝑆𝑛(𝜌) = (𝐼𝑁 − 𝜌𝑊𝑁), 𝑉�𝑛𝑡 = 𝑆𝑛(𝜌)𝑌�𝑛𝑡 − 𝑋�𝑛𝑡𝛽 and 𝑌�𝑛𝑡 = 𝑌𝑛𝑡 − 1
𝑇
∑ 𝑌𝑛𝑡𝑡 , and 

𝑋�𝑛𝑡 = 𝑋𝑛𝑡 − 1
𝑇
∑ 𝑋𝑛𝑡𝑡  are time-demeaned variables. 

 When WN is row-standardized, the corresponding transformed SAR model with two-

way fixed effects is  

𝑌𝑡∗∗ = 𝐹𝑁,𝑁−1
′ 𝑌𝑡∗ = 𝜌�𝐹𝑁,𝑁−1

′ 𝑊𝑁𝐹𝑁,𝑁−1�𝐹𝑁,𝑁−1
′ 𝑌𝑡∗ + 𝐹𝑁,𝑁−1

′ 𝑋𝑡∗𝛽 + 𝐹𝑁,𝑁−1
′ 𝑉𝑛𝑡∗  

                                           = 𝜌(𝐹𝑁,𝑁−1
′ 𝑊𝑁𝐹𝑁,𝑁−1)𝑌𝑡∗∗ + 𝑋𝑡∗∗𝛽 + 𝑉𝑛𝑡∗∗. (9) 

Again, assuming normal errors, the log likelihood can be expressed as 

𝐿𝐿(𝛽,𝜌,𝜎2) = −(𝑁−1)(𝑇−1)
2 ln(2𝜋𝜎2) + (𝑇 − 1)|𝑆𝑛∗(𝜌)| − 1

2𝜎2
∑ 𝑉𝑛𝑡∗∗

′(𝛽,𝜌)𝑉𝑛𝑡∗∗(𝛽,𝜌)𝑇−1
𝑡=1 ,  (10)  
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where 𝑆𝑛∗(𝜌) = �𝐼𝑁−1 − 𝜌𝐹𝑁,𝑁−1
′ 𝑊𝑁𝐹𝑁,𝑁−1� , 𝑉𝑛𝑡∗∗ = 𝑆𝑛∗(𝜌)𝑌𝑛𝑡∗∗ − 𝑋𝑛𝑡∗∗𝛽, and 𝑋𝑛𝑡∗∗ = 𝐹𝑁,𝑁−1

′ 𝑋𝑛𝑡∗ . 

(Complete derivations are provided by LY.) The corresponding likelihood function for the 

direct approach is 

𝐿𝐿𝑑(𝛽, 𝜌,𝜎2) = −𝑁𝑇
2 ln(2𝜋𝜎2) + 𝑇|𝑆𝑛(𝜌)| − 1

2𝜎2
∑ 𝑉�𝑛𝑡′ (𝛽,𝜌)𝐽𝑁𝑉�𝑛𝑡(𝛽,𝜌)𝑇−1
𝑡=1 ,  (11) 

where 𝐽𝑁 = 𝐼𝑁 − 1
𝑁𝜄𝑁𝜄𝑁

′  is the deviation from group demean transformation and all other 

variables are defined in (8) above. 

 

Table 3: Tests to Detect Spatial Effects 

 
 

Queen Contiguity 
 
 

 
Inverse Distance 

 AEa DEb  AEa DEb 
      
(1) LMJ - 30.069  - 28.789 
  (0.000)   (0.000) 
(2) LMρ 27.470 19.571  22.864 15.969 
 (0.000) (0.000)  (0.000) (0.000) 
(3) LMλ 27.918 29.812  22.136 28.467 
 (0.000) (0.000)  (0.000) (0.000) 
(4) LMλ|ρ 1.070 0.065  0.235 0.416 
 (0.301) (0.799)  (0.628) (0.519) 
(5) LMρ|λ 0.621 105.108  0.963 96.70 
 (0.431) (0.000)  (0.327) (0.000) 
Chosen 
model SAR or SEM SAR 

  
SAR or SEM 

 
SAR 

LR test for 
two-way 
effects 

273.384 
(0.000) 

276.071  
(0.000) 

  
264.085 
(0.000) 

 
271.041  
(0.000) 

      
Notes: 
p-values are in parentheses. SAR refers to the spatial lag model; SEM refers to the spatial error 
model. 
a Anselin et al. (2006) and Elhorst (2009) tests—standard within transformation. 
b Debarsy and Ertur (2010) tests – Lee and Yu (2010) pseudo-within transformation. 
(1) H0: ρ=λ=0. (2) H0: ρ=0. (3) H0: λ=0. (4) H0: λ=0, with ρ possibly different from 0.  
(5) H0: ρ=0, with λ possibly different from 0. 
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Now that the pseudo-within transformation has been outlined, we expand upon the 

previous LM tests. Anselin et al. (2006) extend into a spatial panel setting LM tests 

specified by Anselin et al. (1996) that test for a spatially lagged dependent variable and 

spatial autocorrelation in cross-sections. Elhorst (2009) also extends Anselin et al. (1996) 

by specifying robust LM tests that test for the presence of a spatial lag or spatial error term 

when the other is assumed to be present. DE test similar hypotheses, but the variables are 

transformed according to the LY (2010) method. We present the LM tests in Table 3; they 

indicate that spatial effects are relevant and that the specification should either be SAR or 

SEM, but not SARAR. Irrespective of the weight matrix, the DE tests support a SAR model 

whereas the ALJ tests are inconclusive. In addition, likelihood ratio (LR) tests for the 

significance of two-way fixed effects provide support for the inclusion of both unit and 

temporal effects. Lastly, similar to the standard panel specification, Hausman tests indicate 

that random effects estimation is not appropriate.  

 All spatial panel models were estimated using Matlab routines created by Elhorst 

(2009) and Debarsy and Ertur (2010).4

5. Empirical Results 

 The spatial weight matrices were created using 

ArcGIS. Because DE only consider unit-specific effects, we modified their code following the 

procedure outlined in LY (2010) to account for temporal effects as well. Monte Carlo 

simulations yield results similar to those presented in LY; thus, we assume our 

modifications are reasonably correct.  

Empirical results and various sensitivity tests are provided in this section. In 

                                                        
4 The spatial econometrics toolbox is available at http://www.spatial-econometrics.com/.  
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general, the coefficient estimates have the expected signs and appear to be robust to 

various specifications and changes to the assumptions. Results are first presented for the 

static models, then the dynamic models and the spatial specifications. 

5.1 Standard Panel Models 

The coefficient estimates for each static model for the one-month and 12-month SPI 

drought indexes are presented in Table 4. Robust standard errors adjusted for clustering 

on stratum are reported as there is evidence of panel heteroskedasticity. As an example, 

the computed modified Wald statistic for group-wise heteroskedasticity (Baum 2001) for 

the main effects model with the one-month SPI is 82.83. The statistic is distributed 𝜒152  

under the homoskedasticity null with a 5% critical value of 25. Thus, we reject the null 

hypothesis. The computed statistics for the other model specifications are similarly large. 

Using Pesaran’s (2004) test for cross-sectional independence, we are unable to 

conclude that the panels are uncorrelated; thus, following Beck and Katz (1995), we also 

estimate panel corrected standard errors (PCSE). However, as they do not lead to different 

conclusions about the statistical significance of the land use variables, they are not 

reported.  

 For the main effects model with the one-month SPI, all land use regressors are 

significant at the 5% level. For cropland, a one percentage point increase is predicted to 

decrease duck density by 6%. For summerfallow, the predicted decrease is 7%, while it is 

6% for pasture. With the 12-month SPI, the coefficient estimates and significance for 

cropland and summerfallow do not change substantially, but pasture becomes statistically 

and practically insignificant. As mentioned previously, pasture is a slow moving variable, so 

it is possible that this result is a statistical artefact or Type II error. 
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Table 4: The Effect of Agricultural Land Use on Duck Populations, Static Panel Models 
 Main Effects   Interactive 

 1-Month SPI 
12-Month 

SPI  
 

1-Month SPI 12-Month SPI 
lPND 
 

0.450 
(0.084)*** 

0.398 
(0.074)***  

 0.507 
(0.201)** 

0.390 
(0.186)** 

 SPI 
 

0.050 
(0.034)* 

0.127 
(0.028)***  

 0.059 
(0.035)* 

0.135 
(0.026)*** 

 CPL 
 

-0.059 
(0.029)** 

-0.050 
(0.027)**  

 -0.061 
(0.033)** 

-0.053 
(0.029)** 

 SMF 
 

-0.074 
(0.025)*** 

-0.062 
(0.023)**  

 -0.079 
(0.032)** 

-0.070 
(0.030)** 

 PST 
 

-0.061 
(0.028)** 

-0.027 
(0.030)  

 -0.050 
(0.041) 

-0.009 
(0.043) 

CPL×lPND 
    

 -0.001 
(0.003) 

-0.0007 
(0.003) 

SMF×lPND 
    

 0.0003 
(0.006) 

0.0003 
(0.006) 

PST×lPND 
    

 -0.004 
(0.009) 

-0.005 
(0.009) 

Average Fixed 
Effect 

4.782 
(1.179)*** 

4.391 
(1.095)***  

 4.884 
(1.350)*** 

4.589 
(1.207)*** 

Notes: Robust standard errors adjusted for clustering on stratum reported in parentheses. 
*** Significant at 1%, ** Significant at 5%, * Significant at 10%. Two-sided test for interaction terms 
and constant; one-sided test for all other coefficients. 
All regressions employ 150 observations. 

For the interactive models, the interaction terms are not significant, but that does 

not mean that there are no moderated relationships between land use and pond density. It 

is possible that an alternative functional form is more appropriate, and this product 

specification is only appropriate for detecting a bilinear relationship (Jaccard et al. 1990). 

As for the coefficient estimates on the predictor variables, they are not substantially 

different from the estimates from the main effects models. The negative effects of cropland 

and summerfallow are both strengthened, but the differences are less than one percentage 

point. Pasture is again insignificant. 

5.2 Dynamic Panel Models 

The coefficient estimates for each dynamic panel model for the one-month SPI are 
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provided in Table 5. The estimates for the 12-month SPI are not provided, but changes in 

the coefficients generally mirror what occurred with the static models; pasture becomes 

insignificant, and the estimates for cropland and summerfallow are strengthened, but not 

substantially. In addition, we do not present empirical results for models with interaction 

terms as these are statistically insignificant in all models. When comparing the estimates, 

we follow Wilson and Butler (2007) and refer to a result as strengthened or weakened if 

the estimate changes in magnitude by more than half a standard error, as measured by the 

standard error of the benchmark. 

Table 5: The Effect of Agricultural Land Use on Duck Populations, Dynamic Panel 
Models 

 Model 
 (3) FEa (3) IVb (4) DL (5) AR PCSEc  
 lPND 
 

0.478 
(0.085)*** 

0.487 
(0.072)*** 

0.449 
(0.086)*** 

0.494 
(0.082)*** 

0.450  
(0.105)***  

 SPI-1 Mo. 
 

0.003 
(0.024) 

-0.013 
(0.037) 

0.047 
(0.033)* 

0.066 
(0.034)** 

0.050  
(0.039)   

 CPL 
 

-0.049 
(0.018)*** 

-0.046 
(0.019)*** 

-0.058 
(0.027)** 

-0.030 
(0.022)* 

-0.059  
(0.024)***  

 SMF 
 

-0.054 
(0.016)*** 

-0.047 
(0.020)*** 

-0.074 
(0.024)*** 

-0.069 
(0.021)*** 

-0.075  
(0.022)***  

 PST 
 

-0.050 
(0.022)** 

-0.046 
(0.027)** 

-0.060 
(0.030)** 

-0.054 
(0.030)** 

-0.061  
(0.033)**  

Ln(Dt-1) 
 

0.461 
(0.118)*** 

0.616 
(0.174)***     

lPNDt-1 
   

0.062 
(0.129)    

Average 
Fixed Effect 

3.015 
(0.745)*** 

2.420 
(1.034)*** 

4.685 
(1.043)*** 

3.439 
(1.058)*** 

6.583  
(1.029)***  

       
𝜌�d    -0.043 -0.011  

Notes: Regression (5) employs 135 observations; all others use 150 observations.  
a Fixed effects estimator. Robust standard errors adjusted for clustering on stratum reported in 
parentheses. 
b Instrumental variables with ln(Dit-2) to instrument ln(Dit-1). 
c Prais-Winsten regression, common first-order autocorrelation. Correlated panels corrected 
standard errors, normalized by the number of observations, reported in parentheses. 
d Estimated coefficient of the AR(1) process. 
*** Significant at 1%, ** Significant at 5%, * Significant at 10%. Two-sided test for the constant; one-
sided test for all other coefficients. 
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The coefficient estimates for the land use variables are similar across models, and 

statistical significance is maintained across all model specifications. In addition, the 

estimates generally remain practically significant. A Hausman test comparing the IV and 

OLS estimates produced a test statistic of 1.32. The statistic is distributed 𝜒62 under the null 

with a 5% critical value of 12.59; therefore, we conclude that the differences between the 

OLS and IV estimates are not systematic. This result is likely because the level of serial 

correlation is small. The estimates of the serial correlation coefficient produced by the (5) 

AR model and PCSE are -0.043 and -0.011, respectively. Moreover, regardless of whether 

equation (3) is estimated by OLS or IV, the coefficient estimate on the LDV is not near one, 

so there is likely little concern over unit roots and cointegration. 

  For cropland, the most significant difference in Table 5 occurs between (5) AR and 

PCSE—the (5) AR estimates are half those of PCSE. For summerfallow and pasture, the 

most significant difference occurs between (3) IV and PCSE—PCSE results are 

strengthened by 2.8 percentage points for summerfallow and 1.5 percentage points for 

pasture.  

 Compared to (1), (3) has weaker results as expected, because the effects of the other 

covariates should diminish when past realizations of the dependent variable are used as 

regressors. Also compared to (1), the results of (4) DL and PCSE remain unchanged, but for 

(5) AR, the results weaken for cropland only. Thus, the estimates from (1) are relatively 

robust. 

5.3 Spatial Panel Models 

As discussed previously, LM tests indicate that the most appropriate model either 

contains a spatially lagged dependent variable or a spatial autoregressive process in the 
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error. Support for the SAR model is somewhat stronger than the SEM specification, 

especially since Jarque-Bera tests suggest that residuals under the direct approach are not 

normally distributed, thereby calling into question the reliability of the Anselin et al. (2006) 

and Elhorst (2009) LM tests. Nevertheless, for comparison, estimates for both models are 

reported in Table 6. Further, Lee and Yu (2010) point out that the usual MLEs are 

inconsistent for SAR models. When these models include both fixed unit and time effects, 

none of the parameters are estimated consistently unless there are a large number of cross 

sections. Moreover, the estimators are biased even when N and T are large; therefore, as an 

alternative to implementing a bias-correction procedure, LY (2010) proposed a data 

transformation approach that yields consistent estimators as long as either N or T is large. 

Although neither N nor T is considered large in this study, Monte Carlo experiments 

suggest that in comparison to the direct ML approach, the LY approach has more desirable 

finite sample properties.  

Both estimation methods are presented in Table 6. For the SAR model, the direct 

and transformation approaches produced virtually identical estimates of β. Other than 

different estimates obtained for ρ and σ2, the only notable difference is the coefficient 

estimate for PST. With inverse distance as the spatial weight matrix, PST is not significant 

under the LY approach, whereas it is significant at the 10% level under the direct approach. 

Again, this is likely an issue with including time-invariant effects whilst also trying to model 

a slow moving variable. Interestingly, the coefficient estimates for the land use variables 

appear to be influenced more by the weight matrix than the estimation approach, whereas 

the strength of the spatial autocorrelation is influenced more by the estimation approach. 
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Table 6: The Effect of Agricultural Land Use on Duck Populations, Spatial Panel 
Models 

 Queen Contiguity  Inverse Distance 
SAR Model: Directa LYb  Directa LYb  
 lPND 
 

0.412 
(0.063)*** 

0.400 
(0.068)***  0.415 

(0.065)*** 
0.398 
(0.071)***  

 SPI 
 

0.031 
(0.028) 

0.025 
(0.030)  0.032 

(0.029) 
0.022 
(0.031)  

 CPL 
 

-0.049 
(0.016)*** 

-0.045 
(0.017)***  -0.054 

(0.016)*** 
-0.052 
(0.018)***  

 SMF 
 

-0.059 
(0.016)*** 

-0.055 
(0.017)***  -0.066 

(0.016)*** 
-0.061 
(0.017)***  

 PST 
 

-0.056 
(0.023)*** 

-0.055 
(0.025)**  -0.039 

(0.024)* 
-0.029 
(0.026)  

ρ 
 

0.457 
(0.072)*** 

0.599 
(0.084)***  

0.461 
(0.085)*** 

0.681 
(0.103)***  

σ2 0.0576 0.0663  0.0616 0.0710  
       
Jarque-Berac 
 

12.025 
(0.002) 

0.475 
(0.789)  

11.364 
(0.003) 

0.224 
(0.894)  

       
SEM Model:       
 lPND 
 

0.480 
(0.066)*** 

0.449 
(0.076)*** 

 0.475 
(0.070)*** 

0.444 
(0.076)***  

 SPI 
 

0.036 
(0.030) 

0.051 
(0.035)* 

 0.040 
(0.032)* 

0.052 
(0.035)*  

 CPL 
 

-0.045 
(0.015)*** 

-0.060 
(0.020)*** 

 -0.059 
(0.016)*** 

-0.059 
(0.020)***  

 SMF 
 

-0.053 
(0.016)*** 

-0.076 
(0.019)*** 

 -0.068 
(0.017)*** 

-0.078 
(0.020)***  

 PST 
 

-0.068 
(0.027)*** 

-0.060 
(0.028)** 

 -0.054 
(0.027)** 

-0.062 
(0.028)**  

λ 
 

0.548 
(0.072)*** 

-0.044 
(0.138) 

 0.540 
(0.083)*** 

-0.287 
(0.194)  

σ2 0.0540 0.0894  0.0593 0.0997  
       
Jarque-Berac 
 

6.294 
(0.043) 

0.494 
(0.781) 

 4.574 
(0.102) 

0.414 
(0.813)  

Notes: Except where noted, standard errors are in parentheses. 
a Direct maximum likelihood in which the common parameters and fixed effects are jointly 
estimated. 
b Lee and Yu (2010) data transformation with quasi-maximum likelihood estimation. 
c p-values are in parentheses.  
*** Significant at 1%, ** Significant at 5%, * Significant at 10%. Two-sided test for ρ and λ; one-sided 
test for all other coefficients. 
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The coefficient estimates for the SEM model are also very similar to the other 

models that have been discussed. The DE (2010) LM tests indicated that the SEM model 

was inappropriate, so unsurprisingly, λ is insignificant when the LY (2010) transformation 

is applied to the data and the coefficient estimates are virtually identical to model (1), the 

standard panel model. 

A brief examination of the estimates in Table 6 shows that results are on par with 

what has already been presented for the standard and dynamic panel models. However, 

interpreting the coefficients as marginal effects neglects the simultaneous feedback 

characteristic of the SAR model and any potential indirect effects (LeSage and Pace 2009a). 

Recall that the SAR specification is 

𝑌𝑡 = 𝜌𝑊𝑁𝑌𝑡 + 𝛽1𝑙𝑃𝑁𝐷𝑡 + 𝛽2𝑆𝑃𝐼𝑡 + 𝛽3𝐶𝑃𝐿𝑡 + 𝛽4𝑆𝑀𝐹𝑡 + 𝛽5𝑃𝑆𝑇𝑡 + 𝛼 + 𝛾𝑡𝜄𝑁 + 𝜀𝑖𝑡.  (9) 

Any spillover effects can be obtained by expressing (9) in its reduced form: 

𝑌𝑡 = (𝐼𝑁 − 𝜌𝑊)−1𝛽1𝑙𝑃𝑁𝐷𝑡 + (𝐼𝑁 − 𝜌𝑊)−1𝛽2𝑆𝑃𝐼𝑡 + (𝐼𝑁 − 𝜌𝑊)−1𝛽3𝐶𝑃𝐿𝑡 + 

(𝐼𝑁 − 𝜌𝑊)−1𝛽4𝑆𝑀𝐹𝑡 + (𝐼𝑁 − 𝜌𝑊)−1𝛽5𝑃𝑆𝑇𝑡 + (𝐼𝑁 − 𝜌𝑊)−1(𝛼 + 𝛾𝑡𝜄𝑁) + 

(𝐼𝑁 − 𝜌𝑊)−1𝜀𝑖𝑡.. 

(10) 

By deriving the matrix of partial derivatives of Yt with respect to the land use variables, we 

can determine the direct and indirect effects of agricultural land use changes on waterfowl 

populations: 

𝜕𝑌𝑡
𝜕𝐶𝑃𝐿𝑡

= (𝐼𝑁 − 𝜌𝑊)−1𝛽3, 𝜕𝑌𝑡
𝜕𝑆𝑀𝐹𝑡

= (𝐼𝑁 − 𝜌𝑊)−1𝛽4 and 𝜕𝑌𝑡
𝜕𝑃𝑆𝑇𝑡

= (𝐼𝑁 − 𝜌𝑊)−1𝛽5  (11) 

The diagonal elements of these matrices are the direct effects, whereas the off-

diagonal elements are indirect effects (DE 2010). Using summary measures from LeSage 
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and Pace (2009a, b), we can calculate an average total impact, an average direct impact and 

an average indirect impact. These measures and their associated t-statistics are presented 

in Table 7. Empirically simulated values of ρ and β can be used to generate empirical 

distributions for the impact measures (see LeSage and Pace 2009a); the t-statistics are 

based on 10,000 sampled raw parameter estimates of the SAR model. 

 The average total impact for each variable is derived by averaging the row-sums of 

the appropriate matrix in (11). The average direct impact is obtained by taking the average 

of the diagonal elements. Then, the indirect impact is the difference between the total and 

direct impacts or the average of the row-sums of the off-diagonal elements.  

Table 7: Impact Measures 
 Queen Contiguity 
 Direct  LY 
 CPL SMF PST  CPL SMF PST 
Direct 
 

-0.0520 
(-3.054)***  

-0.0634 
(-3.757)***  

-0.0600 
(-2.410)***  -0.0518 

(-2.625)***  
-0.0624 
(-3.130)***  

-0.0624 
(-2.113)** 

Indirect 
 

-0.0374 
(-2.143)** 

-0.0457 
(-2.371)***  

-0.0432 
(-1.843)**  -0.0610 

(-1.587)*  
-0.0735 
(-1.483)*  

-0.0736 
(-1.306)* 

Total 
 

-0.0894 
(-2.746)*** 

-0.1091 
(-3.245)*** 

-0.1031 
(-2.230)**  -0.1129 

(-2.056) **  
-0.1360 
(-2.100)**  

-0.1360 
(-1.674)** 

        
 Inverse Distance 
 Direct  LY 
 CPL SMF PST  CPL SMF PST 
Direct 
 

-0.0571 
(-3.278)***  

-0.0690 
(-4.010)***  

-0.0413 
(-1.623)* 

 -0.0604 
(-1.829)**  

-0.0713 
(-2.017)**  

-0.0337 
(-0.941) 

Indirect 
 

-0.0436 
(-2.014)**  

-0.0527 
(-2.169)**  

-0.0315 
(-1.296)* 

 -0.1024 
(-0.293)  

-0.1209 
(-0.306)  

-0.0572 
(-0.240) 

Total 
 

-0.1006 
(-2.786)***  

-0.1216 
(-3.217)***  

-0.0728 
(-1.517)* 

 -0.1627 
(-0.431)  

-0.1923 
(-0.451)  

-0.0909 
(-0.344) 

Notes: t-statistics in parentheses are based on 10,000 sampled raw parameter estimates of the SAR 
model. 
*** Significant at 1%, ** Significant at 5%, * Significant at 10%.   

To explain the interpretation of the impact measures, we consider the impact 

measures for CPL for the direct ML approach with Queen contiguity spatial weights. From 



31 
 

Table 7, the average direct impact of a 1 percentage point increase in cropped land (CPL) 

on duck density is -5.2 percent. The corresponding coefficient estimate from Table 6 is -4.9 

percent. The difference of -0.03 percent represents the feedback effects that return after 

passing through neighbouring strata. Since this difference is small, it is unlikely to be of 

practical significance.  

The indirect impacts are also considered spatial spillovers (LeSage and Pace, 

2009a). They can be interpreted as the impact on a typical stratum if CPL throughout the 

entire PPR increased by one percentage point. Since the indirect impact for CPL is negative, 

this indicates that duck density in a typical stratum would decrease by 3.7%. All else equal, 

the indirect impacts are larger using an inverse distance weight matrix because there are 

more neighbours. Additionally, the magnitude of the spatial autocorrelation coefficient ρ is 

much larger using the Lee and Yu (2010) transformation; consequently, the average 

indirect impacts are also much larger. It is a mistake, however, to interpret the magnitude 

and significance of ρ as representing spatial spillover effects. For example, the indirect 

impacts of the LY approach with an inverse distance matrix are not significantly different 

from zero whereas ρ is significant. If we interpret ρ as the spatial spillover effect, we would 

incorrectly infer that the agricultural variables exert larger negative impacts on duck 

density.  

6. Conclusions 

The aim of this study was to determine the impact of agricultural land use changes 

on waterfowl abundance in the Canadian Prairie Pothole Region. Recognizing that 

empirical results and conclusions are highly contingent on the strategies and methods used 
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to obtain them, various static, dynamic and spatial panel model specifications were 

examined to ascertain the robustness of empirical results. In general, the conclusions hold 

up fairly well. The main static model finds that a one percentage point increase in the 

percentage of farm area that is cropland is predicted to decrease the number of ducks per 

square km by 6%, while the respective declines for summerfallow and pasture acreage are 

7% and 6%. The estimates from dynamic specifications are more conservative. For the 

lagged dependent variable model, a one percentage point increase in cropland is predicted 

to decrease duck density by 4.6%. For summerfallow and pasture, the predicted decreases 

are 4.7% and 4.6%, respectively. Spatial autoregressive models allow the derivation of 

measures for assessing direct and indirect impacts. The estimated direct impacts fall 

between the estimates obtained from the standard and dynamic models, but when spillover 

effects are also included the estimated impacts exceed those predicted by the standard or 

static model.  

The results suggest that, when wetlands are lost at one location, ducks do not 

compensate by breeding in other locations, or, if they do, that there is an overall reduction 

in fecundity. On the other hand, this makes programs to retain or create wetlands all the 

more worthwhile because additional wetlands in one location will result in enhanced 

productivity of ducks in another. It would appear that there are economies of scale for 

waterfowl in wetlands provision. 

 Because geographically referenced data are used to answer the research question, it 

is most logical to use a spatial model to conduct the analysis. In this particular case, the bias 

resulting from not explicitly modelling spatial dependencies may not be practically 

significant, but neglecting possible indirect impacts only gives researchers a partial picture 
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of how agricultural land use changes affect waterfowl populations. For example, one spatial 

model estimates that the direct impact of a one percentage point increase in cropland will 

result in a 5% decline in duck density for a typical stratum, although the total impact is 

much larger (9%) because land use changes in one region not only affect the waterfowl 

population for that stratum, but also impact the population in surrounding regions. Thus, 

both standard and dynamic panel models yield downward biased estimators. 

 As a secondary goal, we sought to test whether wetland abundance moderated the 

effects of agricultural land use variables, but found no statistically significant bilinear 

relationship. Research exploring different functional forms is left to future analyses.  

 One possible application for the results of this study is the assessment of the 

efficiency of conservation programs. As a crude illustration, consider the $1.2 billion that 

the North American Waterfowl Management Plan has spent from 1986-2008 to secure 

25,500 km2 of land in the Canadian Prairie Pothole Region. Simply averaging over this 23 

year period, we determine that 1,100 km2 of farmland was secured annually at a cost of 

$52 million. In 2006, 1,100 km2 constituted 0.25% of farm area and waterfowl density was 

roughly 30 ducks per square km. The conservation dollars spent securing habitat to 

increase the waterfowl population by a single duck can be estimated using these figures 

and the results from the various models. These calculations are presented in Table 8. For 

further simplicity, we assume that the 1,100 km2 of secured land came entirely from 

cropland.  In that case, the estimates range from $107 to $262 per duck, although these 

estimates are on the high side because land taken from summerfallow or pasture to be 

maintained as wetlands would be less costly to secure. 

Nonetheless, the empirical results indicate that, when determining the benefits of 
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conserving wetlands, biologists need to look beyond the impact on nearby duck numbers 

and measure population increases in neighboring strata as well. By considering these 

indirect or spillover impacts of wetlands protection, the costs of preventing declines in 

waterfowl numbers or enhancing populations are also lower. 

Table 8: Estimates of Conservation Dollars Spent Per Duck in 2006 
 
 Standarda Dynamicb Spatial Ac Spatial Bd 
 
Δ Duck Density +0.44 +0.35 +0.67 +0.85 
 
Δ Ducks in PPR 254,438 198,375 385,538 486,881 
 
Expenditure per 
Duck $204 $262 $135 $107 
     
 Notes: The Canadian Prairie Pothole Region is roughly 575,000 km2. 
a Model (1), standard panel specification without interaction effects. 
b Model (3), lagged dependent variable model estimated by IV. 
c Model (9), spatial lag model using a Queen contiguity weight matrix and demeaned data.  
d Model (9), spatial lag model using a Queen contiguity weight matrix and data transformed 
according to the Lee and Yu (2010) method.  

 

Admittedly, the models employed in this study were not overly complex. For 

example, higher-order dynamic processes were not examined and hierarchical models 

were not explored. More importantly, the spatial unit chosen for this analysis was not ideal. 

Given that waterfowl data are available at the transect level and agricultural data are 

available for census consolidated subdivisions, it would be more interesting to examine 

spatial interactions at a finer spatial resolution.5

                                                        
5 The locations of transects are provided in Figure 1. See also USFWS (2010a, p.60). 

 Therefore, there is room to incorporate 

these aspects into future analyses to provide stronger inferences about the impact of 

anthropogenic activity on waterfowl populations. 
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